Influence of gene-by-sex interaction on time-to-asthma onset: a large-scale genome-wide meta-analysis

1INSERM U946, Genetic Variation and Human Diseases Unit; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie - Paris (France), 2Population Health Sciences, Bristol Medical School, University of Bristol - Bristol (United Kingdom), 3Dr von Hauner Children's Hospital, Ludwig Maximilian University; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research - Munich (Germany), 4Research Institute of Medical Genetics, Tomsk NRMC - Tomsk (Russian Fed.), 5Swiss Tropical and Public Health Institute; University of Basel - Basel (Switzerland), 6Busselton Population Medical Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital; School of Population Health, University of Western Australia - Nedlands (Australia), 7Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College; MRC-PHE Centre for Environment & Health - London (United Kingdom), 8Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Science; Bashkir State University, Department of Genetics and Fundamental Medicine - Ufa (Russian Fed.), 9Département des sciences fondamentales, Université du Québec à Chicoutimi - Saguenay (Canada), 10Siberian State Medical University - Tomsk (Russian Fed.), 11Inserrn, Unit 700, Team of Epidemiology; Université Paris-Diderot Paris 7 - Paris (France)

Background: Asthma is a complex disease with sex-specific differences in prevalence, clinical and biological features. Asthma is more prevalent in males during childhood, while it becomes more frequent in females in adolescence and adulthood. The mechanisms behind these sex-specific differences are not well understood and may involve hormonal changes together with differential genetic predisposition.

Objective: Our goal was to identify genetic variants interacting with sex that influence time-to-asthma onset (TAO).

20/02/2018
Methods: We conducted a large-scale meta-analysis of nine genome-wide interaction studies (GEWIS) of TAO (totaling 7,104 men and 6,970 females of European ancestry) using survival analysis methods applied to pediatric and adult asthmatic and non-asthmatic subjects.

Results: We detected three independent loci showing SNP×Sex interaction at the 10^{-5} level. The most significant association with TAO was female-specific in an intergenic region at 5q32 ($P_{\text{female}} = 9.1\times10^{-8}$ versus $P_{\text{male}} = 0.56$). The other two associations were male-specific: within SORCS2 intron 2 at 4q16 ($P_{\text{male}} = 1.3\times10^{-7}$ versus $P_{\text{female}} = 0.15$) and within DGKB intron 1 at 7p21 ($P_{\text{male}} = 3.9\times10^{-7}$ versus $P_{\text{female}} = 0.23$). Functional annotations indicated co-localization of these genetic variants with epigenetic marks and DNA regulatory elements in fibroblasts, lung or blood.

Conclusion: By testing gene-by-sex interactions, we identified novel loci influencing asthma risk in a sex-specific manner. Candidate genes in these loci are involved in inflammatory process and immune cell regulation. Further replication of these findings are ongoing.